Notice
Recent Posts
Recent Comments
Link
«   2025/06   »
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30
Tags
more
Archives
Today
Total
관리 메뉴

저장소

convolution layer 본문

카테고리 없음

convolution layer

김연호님 2017. 7. 21. 16:02
  layer {
    name: "conv1"
    type: "Convolution"
    bottom: "data"
    top: "conv1"
    # learning rate and decay multipliers for the filters
    param { lr_mult: 1 decay_mult: 1 }
    # learning rate and decay multipliers for the biases
    param { lr_mult: 2 decay_mult: 0 }
    convolution_param {
      num_output: 96     # learn 96 filters
      kernel_size: 11    # each filter is 11x11
      stride: 4          # step 4 pixels between each filter application
      weight_filler {
        type: "gaussian" # initialize the filters from a Gaussian
        std: 0.01        # distribution with stdev 0.01 (default mean: 0)
      }
      bias_filler {
        type: "constant" # initialize the biases to zero (0)
        value: 0
      }
    }
  }

Parameters (ConvolutionParameter convolution_param)

  • Required
    • num_output (c_o): the number of filters
    • kernel_size (or kernel_h and kernel_w): specifies height and width of each filter
  • Strongly Recommended
    • weight_filler [default type: 'constant' value: 0]
  • Optional
    • bias_term [default true]: specifies whether to learn and apply a set of additive biases to the filter outputs
    • pad (or pad_h and pad_w) [default 0]: specifies the number of pixels to (implicitly) add to each side of the input
    • stride (or stride_h and stride_w) [default 1]: specifies the intervals at which to apply the filters to the input
    • group (g) [default 1]: If g > 1, we restrict the connectivity of each filter to a subset of the input. Specifically, the input and output channels are separated into g groups, and the ith output group channels will be only connected to the ith input group channels.


Comments